Workshop: Automatisierte Handschriftenerkennung

Joan Andreu Sánchez
Pattern Recognition and Human Language Research group
(Technical University of Valencia)

Günter Mühlberger, Sebastian Colutto, Philip Kahle
Digitisation and Digital Preservation group
(University of Innsbruck)
Agenda

• Part 1: Handwritten Text Recognition (HTR)
• Part 2: Introduction to TRANSKRIBUS (Transcription and Recognition Platform)
• Part 3: Introduction to the expert GUI of TRANSKRIBUS
• Part 4: Hands-on-Session
 – Discussion
Interactive Handwritten Text Recognition and Indexing of Historical Documents: the tranScripotorum Project

V. Romero, A.H. Toselli, M. Villegas, J.A. Sánchez, E. Vidal
{vromero,ahector,mvillegas,jandreu,evidal}@prhlt.upv.es

Presenter: Joan Andreu Sánchez

Pattern Recognition and Human Language Technology Research Center

Universitat Politècnica de València (Spain)

February 2015

DHd-Tagung 2015
Index

1 Handwritten Text Recognition (HTR) and Indexing ▷ 1
2 The tranScriptorium Project ▷ 3
3 Selected Handwritting Datasets ▷ 5
4 HTR and Interactive-Predictive HTR ▷ 10
5 Interactive HTR: Transcription Demonstration ▷ 12
6 HTR and Interactive-Predictive HTR Results ▷ 14
7 Handwritten Text Images Indexing: Search Demonstration ▷ 16
8 Handwritten Text Images Indexing and Search Results ▷ 19
9 Conclusion ▷ 22
Index

1 Handwritten Text Recognition (HTR) and Indexing ▷ 1
2 The tranScriptorium Project ▷ 3
3 Selected Handwritting Datasets ▷ 5
4 HTR and Interactive-Predictive HTR ▷ 10
5 Interactive HTR: Transcription Demonstration ▷ 12
6 HTR and Interactive-Predictive HTR Results ▷ 14
7 Handwritten Text Images Indexing: Search Demonstration ▷ 16
8 Handwritten Text Images Indexing and Search Results ▷ 19
9 Conclusion ▷ 22
Handwritten Text Recognition (HTR) and Indexing

Huge amounts of handwritten historical documents are being published by on-line digital libraries world wide

However, for these raw digital images to be really useful, they need be annotated with informative content

This presentation introduces efficient solutions for the indexing, search and full transcription of historical handwritten document images
Index

1 Handwritten Text Recognition (HTR) and Indexing ▸ 1

延期2 The tranScriptorium Project ▸ 3

3 Selected Handwritting Datasets ▸ 5

4 HTR and Interactive-Predictive HTR ▸ 10

5 Interactive HTR: Transcription Demonstration ▸ 12

6 HTR and Interactive-Predictive HTR Results ▸ 14

7 Handwritten Text Images Indexing: Search Demonstration ▸ 16

8 Handwritten Text Images Indexing and Search Results ▸ 19

9 Conclusion ▸ 22
The tranScriptorium Project

http://www.transcriptorium.eu

- STREP of the FP7 in the ICT for Learning and Access to Cultural Resources challenge (1 January 2013 to 31 December 2015)

- tranScriptorium aims to develop innovative, efficient and cost-effective solutions for the indexing, search and full transcription of historical handwritten document images, using modern, holistic Handwritten Text Recognition technology

1. Enhancing HTR technology for efficient transcription
2. Bringing the HTR technology to users
3. Integrating the HTR results in public web portals

Supported by: EU Cultural Heritage:
Index

1 Handwritten Text Recognition (HTR) and Indexing ▷ 1

2 The tranScriptorium Project ▷ 3

3 Selected Handwritting Datasets ▷ 5

4 HTR and Interactive-Predictive HTR ▷ 10

5 Interactive HTR: Transcription Demonstration ▷ 12

6 HTR and Interactive-Predictive HTR Results ▷ 14

7 Handwritten Text Images Indexing: Search Demonstration ▷ 16

8 Handwritten Text Images Indexing and Search Results ▷ 19

9 Conclusion ▷ 22
Selected Handwritting Datasets

- **BENTHAM**: XVIII/XIX centuries collection of over 4,000 pages of drafts and notes, written by several hands in English

- **PLANTAS**: XVII century botanical specimen manuscript collection of seven volumes written by a single hand in Old Spanish – kindly provided by the BNE

- **HATTEM**: XV century Medieval Manuscript composed of 573 sheets written by a single hand in Dutch

- **ESPOSALLES**: XVII century Marriage License records written by several hands in old Catalan and other languages

- **AUSTEN**: XVIII century Juvenilia manuscripts by Jane Austen (single hand in English) – kindly provided by the BL

- **REICHSGERICHT**: early XX century manuscripts of court decisions written by several hands in German
“BENTHAM” Dataset

XVIII century collection of over 4,000 sheets of drafts and notes, written by several writers in English

Experiments on a first batch of 433 pre-selected page images

<table>
<thead>
<tr>
<th>Number of:</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pages</td>
<td>433</td>
</tr>
<tr>
<td>Lines</td>
<td>11,473</td>
</tr>
<tr>
<td>Running words</td>
<td>106,905</td>
</tr>
<tr>
<td>Lexicon size</td>
<td>9,717</td>
</tr>
<tr>
<td>Running characters</td>
<td>550,674</td>
</tr>
<tr>
<td>Character set size</td>
<td>86</td>
</tr>
</tbody>
</table>
"AUSTEN" Dataset

Jane Austen’s *Juvenilia*: XVIII century single hand manuscript

Experiments on Volume The Third

<table>
<thead>
<tr>
<th>Number of:</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pages</td>
<td>128</td>
</tr>
<tr>
<td>Lines</td>
<td>2 693</td>
</tr>
<tr>
<td>Running words</td>
<td>25 291</td>
</tr>
<tr>
<td>Dataset lexicon</td>
<td>3 567</td>
</tr>
<tr>
<td>Running characters</td>
<td>118 881</td>
</tr>
<tr>
<td>Character set size</td>
<td>81</td>
</tr>
</tbody>
</table>
“REICHSGERICHT” Dataset

Court decisions from the German High Court from 1900-1914.

Experiments on a first batch of 114 pre-selected page images

<table>
<thead>
<tr>
<th>Number of:</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pages</td>
<td>114</td>
</tr>
<tr>
<td>Lines</td>
<td>4,046</td>
</tr>
<tr>
<td>Running words</td>
<td>40,566</td>
</tr>
<tr>
<td>Dataset lexicon</td>
<td>6,098</td>
</tr>
<tr>
<td>Running characters</td>
<td>251,813</td>
</tr>
<tr>
<td>Character set size</td>
<td>92</td>
</tr>
</tbody>
</table>
Index

1. Handwritten Text Recognition (HTR) and Indexing ▶ 1
2. The tranScriptorium Project ▶ 3
3. Selected Handwritting Datasets ▶ 5
 - 4. *HTR and Interactive-Predictive HTR* ▶ 10
 - 5. Interactive HTR: Transcription Demonstration ▶ 12
 - 6. HTR and Interactive-Predictive HTR Results ▶ 14
 - 7. Handwritten Text Images Indexing: Search Demonstration ▶ 16
 - 8. Handwritten Text Images Indexing and Search Results ▶ 19
9. Conclusion ▶ 22
HTR and Interactive-Predictive HTR

HTR current state-of-the-art:

- Segmentation-free approach: no explicit segmentation of text images into words or characters is required
- The basic input unit is a handwritten text line image
- Statistical modeling at different perception levels:
 - Optical (character shape), using Hidden Markov Models (HMMs)
 - Lexical, by means of finite-state character representation of words
 - Syntactical, based on statistical language models, such as N-grams

Interactive-predictive framework: rather than full transcription automation, the system assists the human transcriber

- Combines HTR efficiency with the accuracy of human experts, leading to cost-effective perfect transcripts
HTR Architecture

- **Preprocessing**

- **Feature Extraction**
 \[x = \vec{x}_1, \vec{x}_2, \ldots, \vec{x}_n, \vec{x}_i \in \mathbb{R}^D \]

- **Decoding**
 \[\hat{w} = \arg \max_w p(w | x) \]
 \[= \arg \max_w p(x | w) \cdot P(w) \]

Huge sets of \(N \)-best hypotheses can be arranged into a Word Graph or Lattice.
Index

1 Handwritten Text Recognition (HTR) and Indexing ▷ 1
2 The tranScriptorium Project ▷ 3
3 Selected Handwriting Datasets ▷ 5
4 HTR and Interactive-Predictive HTR ▷ 10
5 Interactive HTR: Transcription Demonstration ▷ 12
6 HTR and Interactive-Predictive HTR Results ▷ 14
7 Handwritten Text Images Indexing: Search Demonstration ▷ 16
8 Handwritten Text Images Indexing and Search Results ▷ 19
9 Conclusion ▷ 22
Interactive HTR: Transcription Demonstration

- It is just a “demo”! not intended for real operation (other systems do that)

- Everything is real. No tricks to make demo look better than real

- Web client-server architecture: Web browser front-end, back-end server providing off-line HTR-CATTI

- Off-line HTR-CATTI decoder based on word graphs

- Three tasks:
 - BENTHAM: 78K words open vocabulary
 - AUSTEN: 78K words external, open vocabulary from Bentham texts
 20K words external, open vocabulary from Austen texts
 - REICHSGERICHT:
 6K words open vocabulary
Index

1 Handwritten Text Recognition (HTR) and Indexing ▶ 1
2 The tranScriptorium Project ▶ 3
3 Selected Handwriting Datasets ▶ 5
4 HTR and Interactive-Predictive HTR ▶ 10
5 Interactive HTR: Transcription Demonstration ▶ 12
6 HTR and Interactive-Predictive HTR Results ▶ 14
7 Handwritten Text Images Indexing: Search Demonstration ▶ 16
8 Handwritten Text Images Indexing and Search Results ▶ 19
9 Conclusion ▶ 22
HTR and Interactive-Predictive HTR Results

- **BENTHAM**: Training: OMs with 400 pages, LM Lex. 78K words. Test: 33 pages.
 \[\text{WER} = 22.0\% \quad \text{WSR} = 17.2\% \quad \text{EFR: } 21.5\% \text{ wrt post-edit} \]
 \[\text{CER} = 9.9\% \]

- **AUSTEN**: *No training*; just using Bentham models
 \[\text{WER} = 45.0\% \quad \text{WSR: } 27.5\% \quad \text{EFR: } 38.9\% \text{ wrt post-editing} \]
 \[\text{CER} = 25.5\% \]

 AUSTEN: Training: OMs with 50 pages, LM Lexicon 20K words. Test: 78 pages
 \[\text{WER} = 32.2\% \quad \text{WSR} = 21.4\% \quad \text{EFR: } 33.5\% \text{ wrt post-editing} \]
 \[\text{CER} = 15.9\% \]

- **REICHSGERITCH**: Training: OMs with 88 pages, LM Lex. 6K words. Test: 26 pages
 \[\text{WER} = 33.3\% \quad \text{WSR: } 25.1\% \quad \text{EFR: } 24.6\% \text{ wrt post-editing} \]
 \[\text{CER} = 14.5\% \]

WER/CER: percentage of mis-recognized words/characters.

Experiments with *open-vocabulary* lexica and bi-gram LMs.

WSR = Percentage of word-level corrections to achieve ground truth transcripts.

EFR = “Estimated Effort Reduction”.
Index

1 Handwritten Text Recognition (HTR) and Indexing ▷ 1
2 The tranScriptorium Project ▷ 3
3 Selected Handwritting Datasets ▷ 5
4 HTR and Interactive-Predictive HTR ▷ 10
5 Interactive HTR: Transcription Demonstration ▷ 12
6 HTR and Interactive-Predictive HTR Results ▷ 14
7 Handwritten Text Images Indexing: Search Demonstration ▷ 16
8 Handwritten Text Images Indexing and Search Results ▷ 19
9 Conclusion ▷ 22
Handwritten Text Images Indexing and Search

- There are massive text image collections out there, but their textual content remains practically inaccessible.

- If perfect or sufficiently accurate text image transcripts were available, image textual context could be straightforwardly indexed for plaintext textual access.

- But fully automatic transcription results lack the level of accuracy needed for useful text indexing and search purposes.

- And manual or even interactive-predictive assisted transcription is entirely prohibitive to deal with massive image collections.

- Good news: indexing and search can be directly implemented on the images themselves, without explicitly resorting to any image transcripts, as we will see now.
Handwritten Text Images Indexing and Search: Demonstration

- It is just a “demo”! not (yet) intended for real operation. But everything is real – no tricks to make demo look better than real

- Line-level indexing according to the precision-recall trade-off model:
 Rather than exact searching, search is carried out with a confidence threshold, specified by the user as part of the query in order to meet the required precision-recall trade-off

- Word confidence scores are based on pixel-level probabilities and computed for line-shaped regions. Spotted word positions are marked only approximately

- Two tasks:
 - AUSTEN: Trained on Austen (50p), 20K words open vocabulary. Demo on the whole “Juvenile volume The Third” (128 pages)
 - PLANTAS: Trained on Plantas (224p), 21K words open vocabulary. Demo on Volume I (about 1 000 pages)
Index

1 Handwritten Text Recognition (HTR) and Indexing ▷ 1
2 The tranScriptorium Project ▷ 3
3 Selected Handwritting Datasets ▷ 5
4 HTR and Interactive-Predictive HTR ▷ 10
5 Interactive HTR: Transcription Demonstration ▷ 12
6 HTR and Interactive-Predictive HTR Results ▷ 14
7 Handwritten Text Images Indexing: Search Demonstration ▷ 16
8 Handwritten Text Images Indexing and Search Results ▷ 19
9 Conclusion ▷ 22
Pixel-level posterior probabilities P for a text image X and word $v = $"matter".

An accurate, contextual (n-gram based) word classifier was used to compute P. This helped to achieve very low posteriors in a region of X around $(i = 100, j = 200)$, where a very similar word, “matters”, is written.
Results on tranScriptrorium Data Sets

Average Precision (AP)
Mean Average Precision (MAP)
and Recall-Precision curves

Datasets training and test details

- **Bentham**: Multi-hand. **Training**: 400 pg. from Bentham, 87 char. HMMs, 2-gram LM trained on Bentham texts; Lexicon 9341 tokens. **Test**: 33 pages; query set: 6962 keywords

- **Austen-B**: Single hand. No **training**; using Bentham char. HMMs, lexicon and LM. **Test**: 78 pages; query set: 9000 keywords

- **Austen**: Single hand. **Training**: 50 Austen pages, 81 char. HMMs, 2-gram LM trained on Austen texts; Lexicon 20K tokens. **Test**: 78 pages; query set: 9000 keywords
Index

1 Handwritten Text Recognition (HTR) and Indexing ▷ 1
2 The tranScriptorium Project ▷ 3
3 Selected Handwritting Datasets ▷ 5
4 HTR and Interactive-Predictive HTR ▷ 10
5 Interactive HTR: Transcription Demonstration ▷ 12
6 HTR and Interactive-Predictive HTR Results ▷ 14
7 Handwritten Text Images Indexing: Search Demonstration ▷ 16
8 Handwritten Text Images Indexing and Search Results ▷ 19
9 Conclusion ▷ 22
Conclusions

- Automatic or assisted handwritten text transcription and fully automatic indexing is now becoming perfectly feasible.

- Models trained for a given collection can provide quite useful performance on images from other similar collections, without need of (re-)training.

- Several demonstrators have been implemented and made publicly available for first-hand experience in real use; see: http://transcriptorium.eu/demonstrations

On-going and future work

- Research to overcome the line-detection bottleneck.

- Indexing and search experiments with massive handwriting document collections (thousands to millions page images).
Part 2

Introduction to the Transcription and Recognition Platform - TRANSKRIBUS
TRANSKRIBUS enables collaboration among humanities scholars, computer scientists, archives and volunteers with the ultimate goal to revolutionise recognition, transcription and access to historical handwritten documents.
HUMANITIES SCHOLARS

ARCHIVES & LIBRARIES

PUBLIC USERS

COMPUTER SCIENTISTS
Provide images

Receive standard formats (METS/ALTO/TEI/PDF-A)

ARCHIVES & LIBRARIES

DOCUMENTS

HUMANITIES SCHOLARS

TRP

COMPUTER SCIENTISTS

PUBLIC USERS
Provide images

Receive standard formats (METS/ALTO/TEI/PDF-A)

Archives & Libraries

Transcribe text

Receive TEI, PDF

Humanities Scholars

Expert & Crowd Clients

TRP

Documents

Public Users

Computer Scientists
Provide images

Receive standard formats (METS/ALTO/TEI/PDF-A)

Transcribe text

Receive TEI, PDF

Work with reference data

Invent algorithms

TRP

HUMANITIES SCHOLARS

EXPERT & CROWD CLIENTS

HTR DIA KWS NLP, HPC ...

DOCUMENTS

ARCHIVES & LIBRARIES

PUBLIC USERS

COMPUTER SCIENTISTS
TRP

Provide images
Receive standard formats (METS/ALTO/TEI/PDF-A)

HUMANITIES SCHOLARS

Transcribe text
Receive TEI, PDF

EXPERT & CROWD CLIENTS

DOCUMENTS

HTR DIA KWS NLP, HPC ...

WEBSITE

ANNO == ARCHIVES & LIBRARIES

Work with reference data
Improve algorithms

COMPUTER SCIENTISTS

Search and retrieve handwritten documents

PUBLIC USERS

Annotate, evaluate, contribute
HUMANITIES SCHOLARS
- Transcribe text
- Receive TEI, PDF
- Annotate, evaluate, contribute

ARCHIVES & LIBRARIES
- Provide images
- Receive standard formats (METS/ALTO/TEI/PDF-A)

TRANSKRIBUS
TRANSCRIPTION RECOGNITION PLATFORM

COMPUTER SCIENTISTS
- Work with reference data
- Improve algorithms

PUBLIC USERS
- Search and retrieve handwritten documents
Cycle of growth

- HTR Recognition
- Accelerated Digitisation
- New Services
- More Transcripts
- More Users

02/03/2015
Architecture

Integrated Tools
External Services
Document Management
Expert GUI
User Management
Crowd-Sourcing GUI
Website
Search Interface

TRP

METS
ALTO
PDF
TEI
RTF
PAGE

Images

02/03/2015
Archives/collection holders are enabled to

- Manage the transcription process of large and heterogeneous document collections in a standardized and effective way
- Expose their digitised documents to their own employees, humanities scholars, volunteers and the crowd
- Involve users according to their background
- Support humanities scholars in their research
- Outsource transcription (or the training of an HTR model) to service providers (e.g. off-shore)
- Make large amounts of handwritten documents full-text searchable (if a trained HTR model is available)
- Import transcribed documents in machine readable formats (METS/ALTO)
- Provide standardized requirements to researchers and technology providers dealing with “issues of interest” (e.g. manage tendering)
Humanities scholars are enabled to (1)

- Use TRANSKRIBUS for free (registration)
- Upload as many single documents as they want
- Transcribe their documents semi-automated in a way that image and text are linked to each other (improved transcription quality!)
- Enrich their documents with Named Entities (person and geo names, dates) and personal tags
- Normalize their transcription in a transparent way (abbreviations, character sets, editorial declaration)
- Export their document in various formats
 - TEI: transcribed text with machine and human readable text (“scientific style”)
 - PDF-Text: transcribed text with some formatting (“book style”)
 - PDF-Image: transcribed text in the background, image in the foreground (“Scanned PDF style”)
 - RTF: transcribed text for human readability (“working style”)
 - METS/ALTO: full machine readable package (“digital library style”)
 - METS/PAGE: full machine readable package (“computer science style”)

02/03/2015
Humanities scholars are enabled to (2)

- Manage their documents in a private collection (no one else has access!)
- Invite other users to collaborate (e.g. students, colleagues) and to work on the same document
- See different versions of their document and compare them to each other
- Make their documents available to every registered user (=crowd-sourcing scenario)
- Expose their documents also in a simplified web-based transcription GUI (TSX)
- Transcribe documents with the support of HTR if a model is available (needs offline training in beforehand)
- Exploit language resource database in the background (e.g. words, variants, frequencies, etc.)
- Search within a handwritten text collection
- Benefit from other TRANSKRBUS users in an indirect way. The following resources will be available to every user of the platform:
 - Trained HTR models
 - Normalized editorial declarations
 - Normalized Named Entities
 - Language resources
Computer scientists are enabled to

- Benefit from ongoing transcription work in the platform
- Access large amounts of highly valuable data (transcribed text with segmentation) in standardized format (PAGE)
- Download documents (if they are public domain, if the document owner has agreed, or if just small random sets are used)
- Investigate new methods, algorithms and tools on the basis of “real world data”
- Have a tool available with which humanities scholars and archives can express their requirements in a highly standardized way
- Use several web-services for integrating their tools into the platform
- Expose their research results/tools/methods within the platform and increase their reputation among the several communities (humanities, public, archives)
- Compare their results with other research groups (competitions) on the basis of a common document set
- Manage the generation of ground truth (reference data) in an effective way
- Collect and gain feedback from different user groups

02/03/2015
Volunteers and crowd-users are enabled to

• Work with the same tools and in the same way as “professional researchers”
• Make a valuable contribution by enriching archival collections (crowd-sourcing)
• Take part in “citizen science” projects (e.g. produce “Ground Truth”)
• Benefit from easy-to-use web-based interfaces for low-barrier participation (TSX)
• Upload their own family documents
• Benefit from state-of-the-art technology in Computer Vision, Document Layout Analysis, HTR, OCR, etc.
• Expose their documents to experts, service providers, etc.
• Search in the full-text of handwritten documents
Business model

• Free usage
 – Single documents (who ever wants to work with the platform)
 – E.g. humanities scholars, volunteers, genealogists, archivists,…

• Service Level Agreement
 – Document collections
 – E.g. transcription projects (grants), archives, libraries (OCR collections)
 – Yearly fee depends on the amount of documents and services

• Public-Public-Partnership
 – Subsidiary model, not only for TRANSKРИBUS itself, but also for participants
 (e.g. archives, collection holders)
 – E.g. DARIAH, direct support via e-infrastructure funds, research agencies
 (may have interest on standardized formats and workflows, etc.)

• Vision
 – Hundreds of humanities scholars, thousands of volunteers, dozens of archives,…
Next steps

• **Collect feedback**
 – Platform and GUIs are in a “usable” form, but many important features are still not included
 – First real user tests start with this workshop

• **Spread the idea**
 – Several workshops are planned in UK, Austria, Germany, Netherlands, etc.
 – Attract as many humanities scholars and volunteers as possible to try out the platform and to integrate it into their research
 – Address archives and collection holders and convince them to enter service level (pre-)agreement with University of Innsbruck / TRANSKRIBUS

• **How to contribute?**
 – Try out the tools and give us feedback!
 – Upload your documents and transcribe 100 pages for training the HTR
 – Invite us for workshops, presentations, webinars…
 – Spread the idea!
Thank you for your attention!